

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

SOFTWARE DEFINED RADIO DESIGN FOR
SYNCHRONIZATION OF 802.11A RECEIVER

by

Juan Luis Sanfuentes

September 2007

 Thesis Advisor: Frank Kragh
 Second Reader: Roberto Cristi

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2007

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
Software Defined Radio Design for Synchronization of 802.11a Receiver

6. AUTHOR(S) Juan Luis Sanfuentes

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
 Constant improvements in techniques applied to different radio communication system stages, including coding,
modulation, synchronization and security, make any implementation quickly obsolete. On the other hand, different communication
standards used among military and public safety agencies make difficult the necessary interoperability. These reasons force users
to replace equipment frequently, increasing cost and implementation time. Software Defined Radios (SDRs), partly implemented in
software, can solve these problems, making full use of programmable modules. This thesis presents an implementation of the
necessary algorithms that solve the synchronization requirements of IEEE 802.11a WLAN receivers. This is a continuation of a
previous thesis effort, where the post-synchronization steps of the receiver were addressed. The software utilized for this purpose is
the Open Source SCA Implementation::Embedded (OSSIE), developed by Virginia Tech. Each algorithm was created as a
different component, allowing reuse and modularity for the development of future waveforms.

15. NUMBER OF
PAGES

102

14. SUBJECT TERMS
Software Defined Radio, IEEE 802.11, LAN, Synchronization, OFDM, OSSIE, CORBA.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

SOFTWARE DEFINED RADIO DESIGN
FOR SYNCHRONIZATION OF 802.11A RECEIVER

Juan L. Sanfuentes

Lieutenant Commander, Chilean Navy
B. Electrical Engineering, Naval Engineering School, 1997

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2007

Author: Juan L. Sanfuentes

Approved by: Assistant Professor Frank Kragh
Thesis Advisor

Professor Roberto Cristi
Second Reader

Professor Jeffrey B. Knorr
Chairman, Department of Electrical and Computer Engineering .

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

 Constant improvements in techniques applied to different radio communication

system stages, including coding, modulation, synchronization and security, make any

implementation quickly obsolete. On the other hand, different communication standards

used among military and public safety agencies make difficult the necessary

interoperability. These reasons force users to replace equipment frequently, increasing

cost and implementation time. Software Defined Radios (SDRs), partly implemented in

software, can solve these problems, making full use of programmable modules. This

thesis presents an implementation of the necessary algorithms that solve the

synchronization requirements of IEEE 802.11a WLAN receivers. This is a continuation

of a previous thesis effort, where the post-synchronization steps of the receiver were

addressed. The software utilized for this purpose is the Open Source SCA

Implementation: Embedded (OSSIE), developed by Virginia Tech. Each algorithm was

created as a different component, allowing reuse and modularity for the development of

future waveforms.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. OBJECTIVES ..1
B. CONTRIBUTIONS..1
C. RELATED WORKS..2

1. OSSIE..2
2. OFDM Synchronization ..3

D. THESIS ORGANIZATION..3

II. BACKGROUND ..5
A. SOFTWARE BASED RADIO (SBR)...5

1. Software Defined Radio (SDR) ...5
2. Software Communication Architecture...6
3. Open Source SCA Implementation: Embedded (OSSIE)................6

B. OFDM SYNCHRONIZATION ..7
1. OFDM Fundamentals..7
2. Synchronization..11

a. Packet Detection..11
b. Symbol Timing ..13
c. Frequency Synchronization..14
d. Carrier Phase Tracking ..16
e. Channel Estimation ..17

C. IEEE 802.11A ...18
1. Modulation Scheme ...19
2. Packet Structure...20

a. PHY for OFDM System Description......................................20
b. OFDM Specific Service Parameters.......................................21

D. CHAPTER SUMMARY..22

III. SIMULATIONS AND DESIGN ...23
A. MATLAB SIMULATION...23

1. Transmitter...23
2. Channel ...25
3. Receiver...26
4. Results ...27

a. AWGN..27
b. Frequency Offset...28
c. Multipath ...29

B. OSSIE DESIGN ...33
1. Design Considerations ...33

a. Components...33
b. Ports...33
c. Properties...34

2. Synchronization Components Structure..35

 viii

IV. OSSIE COMPONENT DEVELOPMENT..37
A. SYNCHRONIZATION COMPONENT DEVELOPMENT......................37

1. Component Development Using OSSIE...37
2. Synchronization Stage Components...39

a. Delay and Correlate ..40
b. Symbol Timing ..43
c. Frequency Synchronization..45
d. Channel Estimation ..47
e. FFT..48
f. Buffer Size ...50
g. CP Removal ...51
h. Channel Compensation ..52
i. Phase Tracking ...54

B. ISSUES DURING DEVELOPMENT AND RECOMMENDATIONS.....55
1. OSSIE Installation ...55
2. Documentation ...56

a. Assembly Controller Component..56
b. FFTW Library...57

V. 802.11A WAVEFORM AND TESTING..59
A. 802.11A SYNCHRONIZATION WAVEFORM...59
B. TESTING WAVEFORMS..61

1. Test 0 ...62
2. Test 1 ...63
3. Test 2 ...63
4. Test 3 ...64

C. RESULTS ...64
1. Signal 1..66
2. Signal 2..67
3. Signal 3..69
4. Signal 4..70
5. Signal 5..72
6. Signal 6..73

VI. CONCLUSIONS AND FUTURE WORK...77
A. SUMMARY OF WORK..77
B. SUGGESTED FUTURE WORK ...77

1. Demodulation and Codification Components Upgrade77
a. Initialization Circuit..78
b. Connection Between Synchronization and Decoding

Components...78
2. Real Data Test ..78

LIST OF REFERENCES..79

INITIAL DISTRIBUTION LIST ...81

 ix

LIST OF FIGURES

Figure 1. OFDM symbol generation. (After Ref. [14])..8
Figure 2. CP generation (After Ref. [14]). ..9
Figure 3. Delayed sub-carrier without CP (After Ref. [13]). ..10
Figure 4. Delayed sub-carrier with CP (After Ref. [13]). ...10
Figure 5. Block diagram of the delay and correlate algorithm (From Ref. [15]).12
Figure 6. Block diagram of correlation based algorithm...13
Figure 7. Analytic signal. ..14
Figure 8. PPDU frame format. (After Ref. [17])...20
Figure 9. PLCP preamble. (After Ref. [17])..21
Figure 10. Block diagram of the Matlab simulation program...23
Figure 11. Received signal after downconversion. ...26
Figure 12. Signal affected by a frequency offset of 140 kHz..29
Figure 13. Signal affected by a frequency offset of 170 kHz..29
Figure 14. Signal with a second path delayed 0.6 sµ . ..31
Figure 15. Signal with a second path delayed 1.2 sµ ..32
Figure 16. Sample component communication layouts (From Ref. [18]).........................34
Figure 17. Block diagram of OFDM synchronization waveform.35
Figure 18. OWD Man Machine Interface. ..38
Figure 19. Flowchart symbol definitions. ...39
Figure 20. Delay_Corr component flowchart. ..42
Figure 21. Symbol_Timing component flowchart. ..44
Figure 22. F_Sync component flowchart. ...46
Figure 23. Channel_Estimation component flowchart..48
Figure 24. FFT component flowchart. ..49
Figure 25. Buffer_Size component flowchart. ...51
Figure 26. CP_Removal component flowchart. ..52
Figure 27. CH_C component flowchart. ...53
Figure 28. Phase_Trk component flowchart. ..55
Figure 29. 802.11a component core structure. ..59
Figure 30. General model of synchronization stage waveform...60
Figure 31. Initialization circuit..61
Figure 32. Test 0 waveform. ...62
Figure 33. Test 1 waveform. ...63
Figure 34. Test 2 waveform. ...63
Figure 35. Test 3 waveform. ...64
Figure 36. Frequency synchronization effect in Signal 1..66
Figure 37. Channel and phase correction of Signal 1..67
Figure 38. Frequency synchronization effect in Signal 2..68
Figure 39. Channel and phase correction of Signal 2..68
Figure 40. Frequency synchronization effect in Signal 3..69
Figure 41. Channel and phase correction of Signal 3..70
Figure 42. Frequency synchronization effect in Signal 4..71

 x

Figure 43. Channel and phase correction of Signal 4..71
Figure 44. Frequency synchronization effect in Signal 5..72
Figure 45. Channel and phase correction of Signal 5..73
Figure 46 Frequency synchronization effect in Signal 6..74
Figure 47. Channel and phase correction of Signal 6..75

 xi

LIST OF TABLES

Table 1. Rate Dependent Parameters (After Ref. [17])..19
Table 2. Non-zero values of P sequence..21
Table 3. Pilot value designation example. ...22
Table 4. Sub-carriers position of OFDM symbols (After Ref. [17]).24
Table 5. List of functions defined in the Tx block...25
Table 6. List of functions defined in Channel block..25
Table 7. List of functions defined in the Rx block...26
Table 8. Characteristics of the simulated 802.11a signals. ..65

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF SYMBOLS, ACRONYMS AND ABBREVIATIONS

ADC Analog to Digital Converter
AWGN Additive White Gaussian Noise
CP Cyclic Prefix
DSW Double Sliding Window
FFT Fast Fourier Transform
FPGA Field Programmable Gate Array
ICI Intercarrier Interference
IF Intermediate Frequency
IFFT Inverse Fast Fourier Transform
ISI Intersymbol Interference
JPEO Joint Program Executive Office
JTRS Joint Tactical Radio System
LP Long Preamble
MAC Medium Access Control
MMI Man Machine Interface
OFDM Orthogonal Frequency Division Multiplexing
OSSIE Open Source SCA Implementation::Embedded
OWD OSSIE Waveform Developer
PHY Physical Layer
PLCP PHY Layer Convergence Procedure
PPDU PLCP Protocol Data Unit
PSDU PHY Layer Service Data Unit
PSK Phase Shift Keying
QAM Quadrature Amplitude Modulation
SBR Software Based Radio
SCA Software Communication
SDR Software Defined Radio
SP Short Preamble
TS Training Sequence
USB Universal Serial Bus
WLAN Wireless Local Area Networks
WNW Wideband Network Waveform

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

This thesis presents a Software Defined Radio (SDR) application for a particular

communication system, the synchronization stage of an Orthogonal Frequency Division

Multiplexing (OFDM) packet based receiver. The standard chosen for this work is the

IEEE 802.11a standard, which specifies Wireless Local Area Network (WLAN)

operation in the 5 GHz band. A SDR solution refers to the capacity to reprogram the

hardware involved in a communication system, in order to manage different waveforms.

The main advantage is the ability to modify the system’s characteristics, including

modulation, error control coding, carrier frequency and data link protocol, while avoiding

the necessity of changing the hardware. This is essential in the military, since disparate

equipment, with its particular characteristics and lack of modularity, makes

interoperability between branches and allied countries difficult. This new concept has

been of great interest in the U.S. Government, where the Joint Tactical Radio System

(JTRS), a major program conducted by the Joint Program Executive Office (JPEO), has

developed an open source framework denominated the Software Communication

Architecture (SCA), which defines the way to configure hardware and software that form

a SDR system.

 The software utilized for developing the application is the Open Source SCA

Implementation::Embedded (OSSIE), a SDR design environment created by Mobile and

Portable Radio Research Group (MPRG) based at Virginia Tech University. This

software facilitates the design of software components that perform a particular

communication task, and the design of waveforms based on the interconnection and

configuration of these components.

 The synchronization stage of 802.11a extends the functionality of an already

developed thesis, which covered the post synchronization stage: signal demodulation and

decoding. That work assumed an ideal channel and perfect synchronization and was

developed in an earlier version of OSSIE. OFDM has become an attractive alternative for

new communication standards due largely to its efficient use of the spectrum, achieving

considerable bandwidth efficiency, thereby allowing wireless transmission at high data

 xvi

rates in a modest bandwidth. A foundational concept behind OFDM is the use of

orthogonal sub-carriers that split the transmitted data into different channels, after

performing an Inverse Fast Fourier Transform (IFFT), allowing parallel transmission

with no self-interference. The use of a Cyclic Prefix (CP) before each OFDM symbol,

which consists of the repetition of the symbol tail, allows robustness against multipath

due to IFFT properties. Synchronization is crucial with OFDM for successfully receiving

the transmitted signal, since the orthogonality can be lost because of incorrect packet

detection, symbol synchronization, or a frequency offset.

 The synchronization process performed in this application includes coarse and

fine packet start detection, coarse and fine frequency detection and correction, channel

estimation and compensation, and finally symbol phase tracking and correction. The use

of Matlab, a programming language oriented towards engineering calculations, at the

beginning of the work was essential for verifying the correct implementation of the

algorithms obtained from the literature. After this process, the next step was

programming the components in OSSIE and testing them against the results obtained in

Matlab. The testing was achieved by creating a waveform that includes the developed

components, which processed simulated OFDM signals generated in Matlab. These

simulated signals were affected by noise, frequency offset and a multipath channel. The

results demonstrated the correct functionality of the components by verifying the digital

samples after each component through the use of constellation diagrams.

Future work in this specific implementation includes the development of a

component in charge of controlling the necessary hardware to obtain the digital samples

that should be passed to the first component in the synchronization stage: the packet

detection. Also, work is needed in revising the demodulation and decoding stage

components in order to make them compatible with the current version of OSSIE and

integrate them with the synchronization components developed in this thesis, obtaining a

complete 802.11a receiver working in OSSIE. Finally, work is needed to integrate the

software solution onto a suitable hardware platform, in particular one capable of

processing the high data rate OFDM signal in real time.

 xvii

ACKNOWLEDGMENTS

I would like to thank Professor Frank Kragh for the opportunity to work in the

area of Software Defined Radio, a subject that is of great interest in the communications

community and will help me in my current and future job. His guidance during the

development of the thesis and patience in the revision process were invaluable.

Professor Roberto Cristi motivated me to work with OFDM. His course in Digital

Signal Processing for Wireless Communication presented the fundamental concepts of

this modern communication waveform in a very professional and enjoyable class. He also

constantly supported me in answering innumerable questions and kept my own spot on

his blackboard for almost a year.

Donna Miller was a great help at NPS’s Software Defined Radio Laboratory. She

quickly and efficiently assisted me in solving all of the hardware and software requests I

brought her.

I would like to thank the constant support of my wife Paola and my daughter

Constanza, who had the patience and understanding that allowed me to finish this

challenge.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. OBJECTIVES

The purpose of this thesis is to demonstrate that different components of a radio

communication system can be made reconfigurable using software. In particular this

work has the following objectives:

• Understand the concepts of SDR and learn how to use OSSIE as a
platform to create communication components, and design a desired
waveform.

• Learn the synchronization techniques useful for OFDM signals.
• Apply these synchronization algorithms, using the development tool

included in OSSIE.
• Prove the functionality of each component, by testing the corresponding

waveform by receiving OFDM packets affected by the channel.

B. CONTRIBUTIONS

The present thesis contributes to several organizations, where the use of SDR is

becoming important. OFDM synchronization is not only used in 802.11a, but also in

others standards including:

• IEEE 802.11g Wireless Local Area Network in the 2.4 GHz band [1],
• IEEE 802.16 Wireless Metropolitan Area Network,
• European Telecommunications Standards Institute (ETSI) Technical

Report (TR) 101 496 Digital Audio Broadcasting (DAB),
• ETSI European Standard (EN) 301 701 Digital Video Broadcasting

(DVB), and
• International Telecommunications Union (ITU) G-992 Asymmetric

Digital Subscriber Line (ADSL).

OFDM is currently used also in the military. An example of this is the Wideband

Network Waveform (WNW) [2]. Due to the current success OFDM is undergoing, it

seems very likely that future standards will implement it as its principal modulation

scheme.

 2

The immediate contribution of this thesis is to increase the library of components

under development for the OSSIE community, where Virginia Tech and NPS are

collaborating.

The U.S. government is publishing standards, including Software Communication

Architecture (SCA) [3], to guide the industry in the development of software defined

radio communication systems. The open source feature of OSSIE, allows the industry to

use components already developed.

Due to several naval exercises that American and allied navies execute every

year, there is a permanent requirement of interoperability, which is achieved by following

common tactical procedures and using compatible communication systems. The use of

SDR is a valuable alternative to perform the necessary configurations to achieve the

required compatibility, avoiding changes in hardware. This thesis contributes to allied

navies that have not considered or have just started using SDR in their communication

systems, giving them the basic knowledge in this area, and providing them with some

components that will permit future developments.

C. RELATED WORKS

1. OSSIE

Since OSSIE has been available as a tool that allows development of SDR

systems, several works have been executed. The major efforts come from the group that

created and continuously upgraded the software: Mobile and Portable Radio Research

Group (MPRG) from Virginia Tech [4].

Motivated by research and educational needs, and considering the next generation

in communication systems that U.S. Government Institutions will operate, NPS currently

is offering a SDR course, which is supported by a dedicated laboratory. As a

consequence, some theses have been developed in this area, where OSSIE is the adopted

software platform. SDR designs have been produced at NPS for:

 3

• IS 95B – The Code Division Multiple Access (CDMA)-based 2G cellular

phone standard in North America [5].

• IEEE 802.16- A standard for wireless Metropolitan Area Networks [6].

• IEEE 802.11a- An amendment to a wireless Local Area Network standard [7].

The 802.11a thesis work by Leong [7] was developed using OSSIE version 0.5.0,

where the different stages needed in both the transmitter and receiver were considered.

The receiver uses a total of 18 components for demodulation and decoding, assuming an

ideal channel. Simulations were completed, where the obtained results demonstrated the

correct functionality of the corresponding components.

The natural next step related to 802.11a receivers is the development of the

synchronization stage and channel correction, the subject of the present thesis.

2. OFDM Synchronization

A recent work in OFDM synchronization at NPS is the thesis by Sardana [8],

where packet and frequency detection methods were evaluated. Some recommendations

in this work emphasize the use of data aided based algorithms. In the case of frequency

synchronization, it is shown that the two-step estimation, first coarse and then fine

detection, is effective. This is accomplished using both short and long training sequences,

as will be described later.

D. THESIS ORGANIZATION

The remaining chapters are organized as follows:

• Chapter II explains all the concepts related to OFDM synchronization and
SDR in order to understand the basis of the current work.

• Chapter III explains the design of the algorithms for synchronization, and
the simulation results. The main goal of this chapter is to verify the correct
functionality of the algorithms.

 4

• Chapter IV examines the application developed in OSSIE, where the
development of each particular component is explained.

• Chapter V provides the test results using different 802.11a signals,
previously generated in Matlab.

• Chapter VII gives conclusions and discusses recommendations for future
work in this particular waveform.

 5

II. BACKGROUND

A. SOFTWARE BASED RADIO (SBR)

The concept behind SBR is the capacity to reprogram the hardware involved in a

communication system, in order to manage different communication waveforms, as

required. The main advantage is the ability to modify the system’s characteristics,

including modulation, error control coding, carrier frequency and data link protocol,

while avoiding the necessity of exchanging the hardware.

The term SBR is used in a generic way to describe this emerging technology, where the
terms Software Defined Radio (SDR) and Software Radio (SR) are used depending on
the specific stage, within a communication system, where this technology is applied. [9]

1. Software Defined Radio (SDR)

As introduced in the last paragraph, the terms SDR and SR are part of this

software based technology. SDR refers to certain communication tasks that are developed

in software; including, in the receiver case, the processing performed after the down

conversion process. Software Radio (SR), on the other hand, implies an almost totally

software-based solution, where the digitization step occurs as close to the antenna as

possible, and all the following steps are developed and managed using software. [9]

SDR is a relatively new area that has been growing, and should be seen as part of

the fast development of wireless communications. New technology has helped this quick

technical evolution including, among others, the processor’s speed. The flexibility of

software based implementations makes this alternative an excellent choice to ameliorate

the issues that have been raised, including compatibility with recent technology and the

desirability of hardware reuse.

Several advantages can be considered, with respect to SDR solutions, including:
• Reuse of hardware,
• Lower implementation cost,
• Compatibility with old equipment,
• Fast adaptability in order to reach interoperability, and
• Easy upgrades in modulation, error control coding, and data link

protocols.

 6

2. Software Communication Architecture

The Software Communication Architecture (SCA) is an open source framework

that defines the way to configure the hardware and software that form a SDR system [10].

A framework is a set of classes that work together for a specific type of software. Using

support programs like libraries, it is designed to facilitate software development.

The SCA is mandated by the Joint Tactical Radio System (JTRS), a major

program conducted by the Joint Program Executive Office (JPEO) JTRS, which develops

solutions intended to satisfy DoD communication interoperability requirements.

Flexibility and platform independence are the main characteristics of the SCA,

which allows modularity and facilitates application development. On the other hand, the

idea of developing applications independent of the hardware, where at least one General

Purpose Processor (GPP) is available, come at the cost of some inefficiencies, including

memory allocation problems and latency. [11]

3. Open Source SCA Implementation: Embedded (OSSIE)

OSSIE is open-source SDR development software. It is a current project

developed by Mobile and Portable Radio Research Group (MPRG) based at Virginia

Tech University. Created as a solution to implement communication waveforms, it allows

SDR application development that follows the SCA specifications. The project is written

in the computer languages C++ and python and it has been under continuous

development, since 2003 [12]. The goals of OSSIE are based in investigation and

educational purposes, from the study of interoperability issues to the training of students

in the concepts and development of SDR.

An important tool of OSSIE is the OSSIE Waveform Developer (OWD), which is

supporting software that enables rapid design of components and waveforms.

Components are applications that execute a specific task in a communication system

chain. Selecting the necessary components, the OWD allows the development of a

specific type of waveform.

 7

B. OFDM SYNCHRONIZATION

OFDM signals are used both in broadcast as well as in packet switched

transmissions, with different synchronization requirements. In the broadcast case, the

receiver has a relatively long period of time for synchronization, whereas in packet

systems, time is limited and a fast synchronization is required before and during each

packet [13]. Due to differences in this time constraint, the applied algorithms are not the

same.

Wireless Local Area Networks (WLANs) are packet switched systems; thus, the

following explanation refers to algorithms used in these types of networks.

1. OFDM Fundamentals

OFDM signals allow splitting a high data rate stream into a parallel number of

slow data rate streams, which are transmitted through orthogonal carrier frequencies. The

effect of the slow data rate due to the increase in symbol duration is the reduction of the

fraction of the symbol duration affected by signal dispersion in time caused by multipath

delay spread. At the same time, the bandwidth of each sub-carrier is smaller compared to

the channel bandwidth, thus the usual frequency selective fading on the entire 802.11a

band is realized as flat fading of each sub-carrier, which is much easier to equalize [14].

Several difficulties arise when utilizing digital multicarrier modulation

techniques, including intersymbol interference (ISI) and intercarrier interference (ICI).

The former is almost eliminated by using a guard time before every OFDM symbol. The

latter is avoided applying a cyclic prefix of the symbol in the guard time, keeping the

orthogonality between sub-carriers. [13]

The way to generate an OFDM symbol involves a coding process that ends with a

digital modulation mapping, using either Phase Shift Keying (PSK) or Quadrature

Amplitude Modulation (QAM) on each sub-carrier. Then an Inverse Fast Fourier

Transform (IFFT) over a defined number of values is performed, which has the effect of

modulating each sub-carrier’s symbol by the appropriate complex exponential to create a

 8

complex envelope signal where the symbols are orthogonally frequency division

multiplexed with minimally spaced frequencies, for maximum spectral efficiency.

Figure 1. OFDM symbol generation. (After Ref. [14]).

Figure 1 shows how the ths OFDM symbol is generated, from the sequence

[]sa k , 0,..., 1k K= − , after the coding and modulation process. The length K is the

same as the IFFT window. After the IFFT, the OFDM symbol is prepended with a cyclic

prefix (CP) of length L time samples to form a discrete time signal of M K L= + time

samples. These L CP values are obtained from the end of the IFFT result, which are

prepended at the beginning of the symbol, as depicted in Figure 2. The purpose of the

time guard is to avoid ISI, and its duration must be greater than the multipath delay

spread.

CP

Codec []sa k

[]sa k

[]st m

[]1sa K −

[]0sa

[]1sa K −

[]sa K L−

[]1sa K −

IFFT

[]0sa

[]1sa K −

[]sa k

[]0sa

S/P

su

P/S
[]sa k

 9

Figure 2. CP generation (After Ref. [14]).

Finally the transmitted OFDM symbol []st m , from Figure 1, can be defined by

[14]

[] []
21 ()

0

1 K j k m L
K

s s
k

t m a k e
K

π− −

=

= ∑ (1)

where 0,...., 1k K= − , and 0,...., 1m M= − .

Notice in Equation (1) that each sub-carrier has an integer number of cycles,

which is an integer multiple of the inverse of the symbol duration, K [13] [15] This is

important to keep the desired orthogonality to avoid ICI [15] [16]. The CP length L

should be greater than the average length of the channel impulse response, which is

measured as the multipath delay spread.

The receiver counterpart performs similar operations in reverse order to retrieve

the transmitted data, where a Fast Fourier Transform (FFT) computation is included.

Now, in the receiver case, it is appropriate to explain the reason for the CP. Figure 3

shows a sub-carrier and a delayed version of it, where the CP is not included in the time

guard. The absence of signal in the delayed version is going to destroy the perfect tone

required inside the FFT window, producing a loss of orthogonality, and thereby inducing

M

L

m

[]sa k []sa k IFFT

KL

k = 0,…, K -1

m = 0,…, M -1

 10

ICI. Figure 4, on the other hand, depicts the same situation, but now filling the time guard

with the CP, keeping a delayed but continuous tone inside the FFT window. [13]

Figure 3. Delayed sub-carrier without CP (After Ref. [13]).

Figure 4. Delayed sub-carrier with CP (After Ref. [13]).

Guard Time FFT integration time

Guard Time FFT integration time

 11

2. Synchronization

The receiver of an OFDM communication system must perform an accurate

synchronization process. If it is not achieved correctly, the received data will not be

reliable due to the effect of ICI and ISI, producing degradation of network performance.

The two main synchronization processes that must be performed in an OFDM

receiver are time and frequency synchronization.

A major disadvantage of OFDM signals is the sensitivity to frequency and phase

offset. The causes of frequency offset include small differences between the transmitter

and receiver carrier frequencies, and the effects of the channel, including Doppler shift.

On the other hand, OFDM signals are more robust to time delay, but if this delay is

longer than the CP it will yield ICI [13].

The nature of OFDM signals, allows performing synchronization either in the

time or frequency domain. Which domain is chosen, will be determined by a trade-off

between performance and computational complexity [15].

Most of the synchronization algorithms are based on the use of training sequences

(TS), which are specified by the 802.11a standard, known at the receiver, and allow

detection of packet presence and computation of the frequency and phase of the signal.

An important assumption is that because of the fast and short transmission characteristic

of a WLAN packet, the channel is considered unchanged during the packet, so the

majority of the synchronization is performed in the preamble and used during the whole

packet [15].

a. Packet Detection

The first step in terms of synchronization is to detect the beginning of a

valid transmission. This process is called packet synchronization, where the start time of

the packet is estimated. Some known algorithms for this purpose can be used, including

Energy Detection and Double Sliding Window (DSW) packet detection [15]. The former

calculates the energy within a sliding window of the received signal, which increases

 12

when a packet is received. A decision is made based on a predefined threshold. In the

DSW packet detection case, the energy in two consecutives sliding windows is

calculated. The difference yields an impulse when the packet begins. The drawback of

the first method is the complexity in setting the energy threshold that decides whether the

incoming signal level indicates the start of a valid packet or not. This is largely because

the noise power and the signal power are usually not known beforehand.

Although DSW packet detection is a good solution, better results are

obtained if known information is considered, taking advantage of the cross-correlation

properties that give a result independent of the power. This known information is the

Training Sequence (TS). The resulting algorithm is called Delay and Correlate [15].

As depicted in Figure 5, the first step of the algorithm consists of delaying

by D samples a copy of the received digital signal nr , where D is the length of the TS.

Then the square of the cross-correlation between the original signal and the delayed

version is calculated and divided by the square of the latter, obtaining a normalized result

nu .

Figure 5. Block diagram of the delay and correlate algorithm (From Ref. [15]).

The terms CO and PO are computed within a sliding window. The first

represents the correlation between the two versions of the incoming signal; the second,

the power of the delayed version.

As a consequence, when only noise is received, the correlation averages to

zero, but when a valid signal is received, the cross-correlation of the TS gives an

increasing value that indicates the presence of the packet.

nu ÷2
nr

Dz−

CO

PO
2

*

 13

b. Symbol Timing

After obtaining a rough estimate of the packet start time, an accurate result

is desired. The goal of symbol timing is to find out the exact sample time n when each

OFDM symbol starts. A simple way to accomplish this is to determine the exact packet

start time and then use the known packet format to determine the start time for each

symbol. This is done using a cross-correlation between the incoming signal and the

known TS. Figure 6 depicts the corresponding signal flow structure. In this scheme, nr

represents the incoming signal, and kg the long training sequence.

Figure 6. Block diagram of correlation based algorithm.

The term CO is the corresponding sliding window that computes the

cross-correlation indicated below

1
*

0

L

n n k k
k

c r g
−

+
=

= ∑ (2)

As indicated in the equation above, increasing L yields better results, due

to the fact that more information is taken into account, but also increases computation.

The maximum value of L is limited by the length of the sequence. This situation is one

of the tradeoffs that must be in consideration. Sample n that gives the highest nu value

corresponds to the first sample of the packet.

nc
nu 2

nr CO

kg *

 14

c. Frequency Synchronization

As mentioned in [15], there are three types of algorithms for solving

frequency synchronization

• Data-aided algorithms,

• Nondata-aided algorithms, and

• Cyclic prefix based algorithms.

The best of the algorithm types suited for WLANs is the Data-aided type,

where the known training sequences permit us to obtain the frequency offset before the

start of the packet’s information payload.

Data-aided algorithms can be applied either in the time or frequency

domain, although the former is recommended, since computing the DFT of the symbols

increases computation without any advantage over the time domain approach.

Figure 7 depicts the signal flow diagram of the transmitted data nt , where

Txf and Rxf are the transmitted and received carrier frequencies originated by each local

oscillator.

Figure 7. Analytic signal.

An RF signal

() () cos(2 ())cx t A t f t tπ θ= +

nx�
nt�

2 Tx sj f nTe π
2 Rx sj f nTe π−

nr�

 15

can be represented by its complex analytic signal
[2 ()]() () cj f t tx t A t e π θ+=�

Therefore the analytic transmitted signal from Figure 7 can be expressed as
2 tx sj f nT

n nx t e π=� (3)

And the noiseless analytic received signal can be expressed as

2 Rx sj f nT
n nr x e π=� �

2 sj f nT
n nr t e π ∆= �� (4)

where Tx Rxf f f∆ = −

The frequency offset estimator is calculated after defining the following

intermediate variable [15]

1
*

0

L

n n D
n

z r r
−

+
=

= ∑ (5)

In Equation (5) time delay D is the length of the training sequence, and L

is the length of the window used in the cross-correlation.

Substituting for nr� in Equation (5) yields

1
22

0

s

L
j f DT

n
n

z e tπ ∆

−
−

=

= ∑ (6)

whereby the frequency offset is estimated as [15]

1 arg()
2 s

f z
DTπ∆ = − (7)

 16

d. Carrier Phase Tracking

Carrier phase tracking is an important task in a WLAN receiver. Its goal is

to eliminate the residual frequency error, remaining after applying the frequency

correction described in the last section. By enhancing frequency accuracy, constellation

rotation is avoided.

A data-aided based solution is used here also. The following type of

correction is performed for every symbol, using known information that is transmitted in

specific carriers, known as pilot sub-carriers or pilot tones. These pilots are going to be

affected by the channel, thus the phase difference between the transmitted and received

pilots needs to be calculated in order to perform the corresponding correction.

The sent pilot, ,s bP , and the received pilot, ,s bW , are related by

, ,s b s b bW P H= (8)

where s is the symbol index, b is the pilot index, and bH is the frequency response of

the pilot sub-carrier. However, the estimated channel frequency response ˆ
bH is not

perfect and therefore

ˆ
b b bH H α= (9)

where 2j sf
s e δπα α= , and 2 sfδπ accounts for all the phase errors in ˆ

bH . Using the

estimated channel frequency response, we can calculate an estimated pilot

, ,
ˆ ˆ

s b s b bW P H= (10)

We can determine the error in the phase of this estimate, and thereby the error in the

phase of our channel frequency response estimate by using the actual and estimated

received pilots

*
, ,

1

ˆ ˆarg
B

s s b s b
b

W Wθ
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ (11)

 17

*
, ,

1

ˆarg ()
B

s b b s b b
b

P H P H
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑

2 *
,

1

ˆarg
B

s b b b
b

P H H
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑

Since
2

,s bP is one, according to the standard, the error in the phase estimate is

*

1

ˆarg
B

b b
b

H H
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑

*

1
arg ()

B

b b
b

H H α
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑

2*

1
arg

B

b
b

Hα
=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑

arg()α= − (12)

After the packet is corrected for the estimated channel, it must be further rotated by

arg()α− to correct for inaccurate phase measurement of bH .

e. Channel Estimation

A transmitted signal is affected by the channel and noise, as shown in the

frequency domain representation shown below

k k k kE H G W= + (13)

where 0,...., 1 and k N N= − is the index of the sub-carrier.

 kE : Received Training Sequence (TS).

 kG : Known transmitted TS.

 kH : Channel frequency response.

 kW : Noise.

 18

A simple way to obtain the channel estimation is as follows

*ˆ .k k kH E G= (14)

Substituting (13) into (14) we obtain

() *ˆ
k k k k kH H G W G= + (15)

2 *
k k k kH G W G= + (16)

The TS values are one or minus one; hence 2
kG is equal to one and

*ˆ
k k k kH H W G= + (17)

Thus the channel estimation represents the effect of the channel and the noise over the

transmitted signal.

Using the average of two received TS, the computation of ˆ
kH can be

improved, because the noise terms will partially cancel while the channel term should be

essentially static.

*1 2ˆ
2

k k
k k

E EH G+⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (18)

C. IEEE 802.11A

The 802.11a standard is one of a series of WLAN standards based on IEEE

802.11, which was released in 1997 and is well known as Wi-Fi. The original version

specifies a maximum data rate of 2 Mbps, using infrared signals or radio spread spectrum

at 2.4 GHz. The first amendment proposed was 802.11a, with a maximum data rate of 54

Mbps but operating in the 5 GHz band using Orthogonal Frequency Division

Multiplexing (OFDM). The second amendment proposed was 802.11b, with a maximum

data rate of 11 Mbps, operating at 2.4 GHz. The 802.11g amendment of this standard was

the third amendment of the physical layer. Using the 2.4 GHz band, 802.11g can achieve

data rates of 54 Mbps through OFDM and spread spectrum modulation.

 19

This section describes some aspects of 802.11a, needed to understand the manner

in which the synchronization algorithms were implemented. The reader should recognize

that much of this work can be extended to 802.11g, with few changes.

1. Modulation Scheme

802.11a uses OFDM, a multi-carrier modulation scheme. The length of the IFFT

window is 64 points, where 48 sub-carriers carry user data, four are pilot tones, and the

remaining 12 are null tones. The null tones provide a guardband at both high and low

ends of the signal spectrum and eliminate the center sub-carrier, which suffers from self

mixing in some common hardware implementations. After applying the IFFT to generate

the time domain OFDM symbol to be transmitted, the last 16 time domain samples are

copied at the beginning of the symbol, yielding a total of 80 time samples per OFDM

symbol.

Table 1 shows the possible data rates and bits per OFDM symbol used in 802.11a,

depending upon the different modulation schemes and coding rates used.

Data
Rate

Modulation Coding
Rate

Coded
bits per

sub-
carrier

Coded
bits per
OFDM
symbol

Data bits
per OFDM

symbol

6 BPSK ½ 1 48 24

9 BPSK ¾ 1 48 36

12 QPSK ½ 2 96 48

18 QPSK ¾ 2 96 72

24 16-QAM ½ 4 192 96

36 16-QAM ¾ 4 192 144

48 64-QAM 2/3 6 288 192

54 64-QAM ¾ 6 288 216

Table 1. Rate Dependent Parameters (After Ref. [17]).

 20

2. Packet Structure

Part 11 of the 802.11 standard [17], particularly the high-speed Physical layer

(PHY) in the 5 GHz Band specification, describes the PHY and Medium Access Control

(MAC) structure for 802.11a.

a. PHY for OFDM System Description

In order to send an 802.11a frame with minimum dependence on the PHY,

the PHY Layer Convergence Procedure (PLCP) is defined, which adds some fields

previously by the MAC layer.

The PHY Layer Service Data Unit (PSDU) can be seen as the payload

provided by the MAC, which after being taken by the PLCP, is encapsulated in a PLCP

Protocol Data Unit (PPDU), as shown in Figure 8.

Figure 8. PPDU frame format. (After Ref. [17]).

The signal field consists of one OFDM symbol and is transmitted at the

minimum rate of 6 Mbps using BPSK modulation. It contains important information

including the rate of the data and the length of the PSDU. This field undergoes

predefined codification, which includes convolutional encoding, interleaving and pilot

insertion. In the codification of the data field a scramble step is added.

 21

b. OFDM Specific Service Parameters

In terms of synchronization, the PLCP preamble is a valuable field of the

PPDU frame, which contains the TS. It is formed by twelve OFDM Symbols

As depicted in Figure 9 the PLCP preamble contains ten short TSs and

two long TSs, wherefore a CP is included.

Figure 9. PLCP preamble. (After Ref. [17]).

Each short TS last 0.8 sµ and each long TS last 3.2 sµ . The group of ten

short TSs is denominated the short preamble (SP), and the group of two long TSs plus

one CP of 1.6 sµ is the long preamble (LP).

Another important features used for synchronization are the pilots. In an

802.11a OFDM symbol, there are four sub-carriers dedicated specifically for carrying a

pilot signal, which function was described in II.B.2.d. In order to generate the pilot signal

there is a base sequence named P. This sequence has non-zero values only for the sub-

carriers indicated in Table 2.

Sub-carrier Value

-21 1

-7 1

7 1

21 -1

Table 2. Non-zero values of P sequence.

 22

The polarity of each pilot sub-carrier change for every symbol, and it is

controlled by what is called sp sequence, which contains 127 values. As an example, the

first twelve values are

{ }1,1,1,1, 1, 1, 1,1, 1, 1, 1, 1sp = − − − − − − −

where s refers to the symbol index. Thus, for the first symbol, which is the signal field,

the four sub-carriers are multiplied by one, and for the fifth symbol, the pilot sub-carriers

are multiplied by minus one. Therefore, the pilots of the signal field and the fifth data

symbol will contain the values indicated in Table 3. The details on how to generate the

sp sequence are described in Reference [17].

Sub-carrier Signal frame 5th data symbol

-21 1 -1

-7 1 -1

7 1 -1

21 -1 1

Table 3. Pilot value designation example.

D. CHAPTER SUMMARY

In this chapter we covered the main concepts behind SDR, OFDM

synchronization and the particular case of 802.11a. The next chapter explains the

simulations which were performed to verify the correct functionality of the

synchronization algorithms, and indicates the principal considerations that should be

taken when programming in OSSIE.

 23

III. SIMULATIONS AND DESIGN

A. MATLAB SIMULATION

The first step before developing the application was the verification of the

corresponding algorithms, which are involved in the synchronization process. For this

purpose, the software Matlab was chosen, since many required functions are already

developed and the vector and matrix oriented mathematics, make this software ideal for

simulations. Additionally, Matlab has a very good debugging tool, which helps to reduce

the time spent in finding errors.

The program consists of a main program, named 80211a.m, divided in three

principal blocks, which are depicted in Figure 10. These three blocks are composed of

functions that are called as required.

Figure 10. Block diagram of the Matlab simulation program.

1. Transmitter

The transmitter generates one 802.11a packet following the specifications

indicated in the standard. The first step is the data generation, which consists of random

data modulated either in BPSK or QPSK. Then the LP and SP are created.

The signal frame is generated through a developed function, which includes CP

and pilot tones. The data is arranged by means of another function that also generates the

pilot tones. Next, the OFDM symbols are formed, taking the IFFT and adding the CP,

according the corresponding position of each sub-carrier, as indicated in Table 4.

Transmitter Receiver Channel

 24

Matlab Block Freq Block Before After time + CP Standard Matlab
index order order IFFT IFFT index Index

1 -26 0 0 48 0 1
2 -25 1 1 49 1 2
3 1 -24 2 2 50 2 3
4 -23 4 3 3 51 3 4
5 -22 4 4 52 4 5
6 -20 5 5 53 5 6
7 -19 6 6 54 6 7
8 -18 7 (1) 7 55 7 8
9 -17 8 8 56 8 9

10 -16 9 9 57 9 10
11 -15 10 10 58 10 11
12 2 -14 11 11 59 11 12
13 -13 12 12 60 12 13
14 -12 13 13 61 13 14
15 -11 5 14 14 62 14 15
16 -10 15 15 63 15 16
17 -9 16 16 0 16 17
18 -8 17 17 1 17 18
19 -6 18 18 2 18 19
20 -5 19 19 3 19 20
21 3 -4 20 20 4 20 21
22 -3 21 (-1) 21 5 21 22
23 -2 22 22 6 22 23
24 -1 23 23 7 23 24
25 1 6 24 24 8 24 25
26 2 25 25 9 25 26
27 3 26 26 10 26 27
28 4 4 27 27 11 27 28
29 5 28 28 12 28 29
30 6 29 29 13 29 30
31 8 30 30 14 30 31
32 9 31 31 15 31 32
33 10 32 32 16 32 33
34 11 33 33 17 33 34
35 12 34 34 18 34 35
36 5 13 35 35 19 35 36
37 14 36 36 20 36 37
38 15 37 37 21 37 38
39 16 -26 38 22 38 39
40 17 -25 39 23 39 40
41 18 1 -24 40 24 40 41
42 19 -23 41 25 41 42
43 20 -22 42 26 42 43
44 22 -21 (1) 43 27 43 44
45 23 -20 44 28 44 45
46 6 24 -19 45 29 45 46
47 25 -18 46 30 46 47
48 26 -17 47 31 47 48

-16 48 32 48 49
2 -15 49 33 49 50

-14 50 34 50 51
-13 51 35 51 52
-12 52 36 52 53
-11 53 37 53 54
-10 54 38 54 55
-9 55 39 55 56
-8 56 40 56 57

-7 (1) 57 41 57 58
-6 58 42 58 59
-5 59 43 59 60

3 -4 60 44 60 61
-3 61 45 61 62
-2 62 46 62 63
-1 63 47 63 64

48 64 65
49 65 66
50 66 67
51 67 68
52 68 69
53 69 70
54 70 71
55 71 72
56 72 73
57 73 74
58 74 75
59 75 76
60 76 77
61 77 78
62 78 79
63 79 80

Table 4. Sub-carriers position of OFDM symbols (After Ref. [17]).

 25

In Table 4, the carriers are divided into blocks, each with a particular number and

color, in order to show their correct position, before computing the IFFT. After the IFFT,

the last 16 values have a different color to illustrate that these are the CP and, as

explained before, added at the beginning of the symbol.

Finally the transmitter concatenates the preambles, signal frame and data frame,

in order to form the packet and upconvert it to an arbitrary carrier frequency.

The developed functions for this part of the program are indicated in Table 5.

Function Description
Signal_frame() Generates the signal frame in the frequency domain.
Data_frame() Generates the data frame in the frequency domain.

Table 5. List of functions defined in the Tx block.

2. Channel

This section of the simulation program is intended to affect the signal as in a

WLAN environment. To accomplish this, Additive White Gaussian Noise (AWGN) is

added to the signal, as well as a small frequency variation as might be caused by Doppler

shift, and multipath. These functions are indicated in Table 6.

Function Description
Frequency_offset() Generates a frequency offset in the carrier frequency.
AWGN() Add AWGN to the signal.
Multipath() Includes more than one path to the transmission.

Table 6. List of functions defined in Channel block.

In order to simulate a multipath environment, the Multipath() function includes

the Matlab function rayleighchan(), where the time delay and the gain of the different

paths are defined.

 26

3. Receiver

The receiver section starts by downconverting the transmitted signal to baseband.

Then it follows the block diagram depicted below, which contains the seven functions

listed in Table 7.

Figure 11. Received signal after downconversion.

The majority of the involved synchronization algorithms were developed in the time
domain, with the exception of the phase tracking algorithm, which was performed in the
frequency domain.

Function Description
Delay_Corr_Packet_SYN() Detects estimated packet start.
Symbol_Timing() Gives the sample where the packet starts.
Time_Domain_Frequency_SYN() Obtains frequency offset.
Frequency_Correction() Applies frequency correction.
Channel_Estimation() Gives the estimated frequency response of

the channel (time domain)
Phase_Tracking() Computes phase difference between the

transmitted and received pilot tones
Data_Recovery() Obtains the data.

Table 7. List of functions defined in the Rx block.

 Data
Recovery

 Phase
Correction.

 Phase
 Tracking

 Channel
Compensation

 CP
Extraction

Channel
Estimation.

Frequency
Correction.

Frequency
Synchr.

Packet
Detection

Symbol
Timing

FFT

 27

The Delay_Corr_Packet_SYN() function performs the algorithm discussed in

II.B.2.a. This function needs a definition regarding the value of the threshold that

indicates that a valid packet is coming. Furthermore, this setting is not enough, since an

isolated peak caused by noise could cross the threshold. Thus, the decision must be made

considering more than one cross-threshold value. For this simulation 20 cross-threshold

value in a row gave a reliable result, empirically based. It is expected that this value

depends on noise environment.

The Time_Domain_Frequency_SYN() and Frequency_Correction() functions are

used sequentially more than once, in order to determine the best performance using either

the SP or LP. These functions accomplish the algorithms indicated in II.B.2.c.

4. Results

In order to prove the algorithms, the signal was subjected to different types of

distortions.

a. AWGN

The noise we chose is such that 0/bE N is 10 dB. The noisy signal is

y x sig N= + i (19)

where: x : original signal.

y : noisy signal.

N : noise of zero mean and unit variance.

2

0

()
/b d

mean x Wsig
E N R

=
⋅
i (20)

In (20) the bandwidth W is a fixed value of 312.5 kHz, regardless the modulation

scheme used. The data rate dR is set to 6 Mbps for the BPSK case, and 12 Mbps for

QPSK.

 28

b. Frequency Offset

As described in [15], the applied algorithm allows a limited frequency

error, defined by

1
2 s

f
DT∆ ≤ (21)

where D is the length of the TS.

The expected maximum frequency offset using the SP is 625 kHz, and

using the LP is 156.25 kHz. On the other hand, the maximum error allowed by the

standard is 212 kHz.

Different values of frequency error were applied, verifying the last

paragraph, and the algorithm’s functionality. Although use of LP can correct a smaller

range of offset frequencies, it gives a more accurate result. Thus, a recommended

alternative [15] is to calculate a coarse frequency offset with the SP (which has a better

operational range), correct the LP, and finally estimate a fine frequency offset using the

LP. The next example consists of computing the frequency offset of a BPSK signal,

already affected by noise.

Figure 12 depicts the case where a 140 kHz offset is applied. It is noted

that the second stage is not needed, since the LP method computes an accurate offset in

the first stage. In Figure 13, an applied 170 kHz offset does not allow the LP method to

compute a reliable offset in the first stage, thus a frequency correction is applied using the

coarse result obtained by the SP method. Now, a second stage using the result utilizing

the LP, can enhance the accuracy of the frequency offset.

 29

Figure 12. Signal affected by a frequency offset of 140 kHz.

Figure 13. Signal affected by a frequency offset of 170 kHz.

The rotation noted in Figure 13, is a typical residual phase rotation, which

affects the phase of every symbol, before phase tracking is applied.

c. Multipath

In order to perform the simulation of multipath, as in a real WLAN

environment, the Matlab rayleighchan() function was used. The goal of the next example

is to show how a multipath larger than the CP length, which is 0.8 sµ according to

Equation (22), begins affecting the signal, producing ISI.

 30

0.8 slength
s

samplesCP
f

µ= = (22)

where # 16samples = and 20sf MHz= . The evaluation uses a noisy QPSK signal with a

frequency offset of 30 kHz and a second path delayed by 0.6 sµ , in a first experiment,

and 1.2 sµ in a second one. The correction is performed in three steps:

1. Frequency correction using preambles correlation.

2. Channel correction after estimating the channel.

3. Residual phase correction using phase tracking algorithm.

Figure 14 shows the case where a 0.6 sµ multipath is applied. In (a) it is

possible to appreciate both paths when the preambles are detected, and in (b) the received

packet after frequency correction, where each dot represents a received QPSK symbol.

Letter (c) indicates zero errors in the receiver after channel and phase correction, and in

(d) it is noted that the resulting constellation has an acceptable shape.

 31

 (a) (b)

(c) (d)

Figure 14. Signal with a second path delayed 0.6 sµ .

Figure 15, on the other hand, depicts the results after applying a second

path delayed 1.2 sµ , a time larger than the CP. Figure 15(a) shows the distance between

paths, and Figure 15(b) the received packet after frequency correction. In Figure 15(c)

and (d) we notice some errors as a consequence of the second path’s length. This is not

surprising. The 802.11a standard is for WLANs which typically are operated indoors. A

 32

path delay of 1.2 sµ corresponds to an additional path length of 360 meters. This is an

unlikely additional path length to experience in a significant propagation path indoors, so

802.11a is unlikely to experience this problem in its intended application. However, this

does suggest that those who wish to use 802.11a equipment outdoors should be aware of

the potential problem caused by longer secondary path delays.

(a) (b)

(c) (d)

Figure 15. Signal with a second path delayed 1.2 sµ .

 33

B. OSSIE DESIGN

1. Design Considerations

As mentioned before, OSSIE enables the engineer to develop waveforms and

components, by using the OSSIE Waveform Developer (OWD). In order to create a

waveform, it is necessary to have available the required components. Some helpful

features of OWD include the capability to write and edit components, manage ports and

include properties.

a. Components

An important characteristic of the OWD is the automatic code that is

generated when a component is created. This not only allows the component to interact

with the rest of the files needed to be installed on a system, but permits the programmer

to focus just on the communication task the component should achieve.

After creating a component, the second step is to write the code for a

specific task. For this purposes, the commented line “// insert code here to do work”,

within the function process_data(), indicates where to locate the code.

The code written by the programmer is located inside a while() loop,

which is permanently executed while the component is active. This is an important point

under consideration when designing components. Usually the loop starts with a specific

function, which allows reading the incoming buffer, getting the data from the previous

component. The loop ends by delivering the processed data to the next component and

erasing the incoming buffer, leaving it ready to read again.

b. Ports

With the release of OSSIE version 0.6.1, the management of ports has

been simplified. There are two types of ports: uses and provides. The first one refers to

the port that sends data out of the component and into the core framework (the core

framework uses the data); the latter, to the component port that receives data from

 34

provided by the core framework. A component can have one, two or more ports.

Depending on the application, one of the following basic configurations can be set up.

Figure 16. Sample component communication layouts (From Ref. [18]).

When defining variables, some of them will be initialized at the beginning

of the process_data() function, outside the mentioned loop. Because a new initialization

is needed every time a packet is detected, a second provider port is required in some

specific components. This second port is enabled in order to inform such components,

that it is time to reset the variables and be prepared to receive a new packet.

c. Properties

In order to be able to reuse components when creating a waveform, it is

desired that the component is developed as general as possible. Under this consideration,

the programmer can utilize the same component in different parts of the process,

modifying parameters from outside, without the necessity of changing the original

component’s code. This feature is new with OSSIE, version 0.6.1.

 35

2. Synchronization Components Structure

Following the sequence used in the Matlab simulation, the OSSIE development of

802.11a synchronization keeps the same general structure. Figure 17 shows the block

diagram of a waveform that contains the components related with synchronization. It is

noted that there are three different block colors. The blue ones represent synchronization

algorithms, the yellow ones are the supporting components needed in this configuration,

and the red represents a component already developed as part of an earlier thesis. For

example, the FFT component is required since some synchronization components work

with information based in the frequency domain. An explanation of each particular

component is included in the next chapter.

Figure 17. Block diagram of OFDM synchronization waveform.

The Signal recovery component needs to inform the Delay and correlate

component of the length of the packet, in order to initialize again some particular

variables.

So far the general design of the application has been explained, showing the

results of the Matlab simulations and indicating the main considerations that should be

taken when programming in OSSIE. The next chapter describes in detail each developed

component.

Frequency
Synchron.

Channel
estimate

FFT

Buffer
change

CP FFT Delay &
correlate

input

Symbol
timing

Channel
comp.

Phase
track

Signal
recovery

 36

THIS PAGE INTENTIONALLY LEFT BLANK

 37

IV. OSSIE COMPONENT DEVELOPMENT

A. SYNCHRONIZATION COMPONENT DEVELOPMENT

This section describes the development of each component needed in the
synchronization stage of the 802.11a receiver.

1. Component Development Using OSSIE

In order to create a component, the OSSIE Waveform Developer (OWD) tool

should be opened with the following Linux command:

>> python wd.py

Figure 18 shows the Man Machine Interface (MMI) that allows the programmer

to create a component. After the component is generated, the following principal files are

created automatically:

• ComponentName.cpp

This is a C++ file which contains the necessary class instances that follow the

SCA functionality. This is where the programmer includes the code that will

define the component’s task.

• ComponentName.h

This file contains the definition of the classes used by the component.

• Main.cpp

Contains default utility code, transparent to the programmer. [6]

 38

Figure 18. OWD Man Machine Interface.

The OSSIE version used in this work is 0.6.1. The main differences with respect

to the previous version are the following:

• Definition of ports:

In the old versions, the ports were defined in a separate file. Now the ports are

defined in the componentName.cpp file. This change makes the overall

development simpler.

• Properties:

This new feature of OWD allows developers to change the value of specific

variables, avoiding the necessity to edit the C++ code to change the variable.

This makes the components more general purpose and facilitates software

reuse.

 39

2. Synchronization Stage Components

The further description of the components includes the name of the component,

the type of ports used, the properties defined and a flowchart which utilizes the symbols

described in Figure 19.

Figure 19. Flowchart symbol definitions.

The flowchart diagram shows, through a general description, the process

accomplished by the method process_data mentioned in section III.B.1.a which executes

the task of the component.

External component

Process

Decision

Input / Output ports

Function call defined in
ComponentName.cpp file

 40

a. Delay and Correlate

Component name: Delay_Corr.

Ports:

 Name Type Description

output_data complexFloat Send samples to the next component.

output_reg realShort Ask register for initialization.

output_ini realShort Inform next component whether new packet

was detected.
Uses

output_SS complexFloat Send two Short Sequences to the next

component.

input_data complexFloat Receive samples for processing.
Provides

input_reg realShort Receive initialization state.

Properties:

Name Type Value Description

Threshold Float 0.7 Set the threshold that should be exceeded by a

correlation result value, in order to be

considered as part of a new packet. Range is

between 0 and 1.

Values over Threshold Short 20 Specify the amount of values that should

exceed the threshold sequentially, to decide

the presence of a new packet.

 41

Function: This component receives the digital samples either from the

digitizer hardware or another component that generates digital samples. In order to

facilitate further computation, the length of the data buffer is 128. Its task is to detect a

new 802.11a packet using the delay and correlate algorithms as discussed in section

II.B.2.a and illustrated using Matlab in section III.A.3. When the values that result from

the correlation begin increasing and exceed the threshold, this indicates that a new packet

is present. Before a packet is detected, all the samples that do not reach the threshold are

eliminated, avoiding unnecessary computation for the next component. Because isolated

peak values could reach the threshold, a minimum number of them in a row are required.

This amount is defined by the Values over threshold property. After the packet is

detected, all new received data is passed directly to the next component, avoiding

unnecessary computation. Figure 20 shows the flow chart that represents the component.

Note that an external component named Initialization is informed when the reception of

the current packet has ended. Its name came from the fact that after a packet has ended,

some specific components should initialize variables in order to be prepared to process a

new packet. In an OFDM waveform, the Initialization component could be fed by

another component, whose function is to extract the packet length from the signal frame.

If an initialization is required, the Delay_Corr component will report this situation to the

next component through the initialization output port.

 42

Figure 20. Delay_Corr component flowchart.

Data input

Read
properties

Register
output

Register
input

Initialization
required

Delay
Correlate

Threshold
exceeded

Amount
 of values
exceeded

Data output

Initialization
output

Initialize()

Packet
Already
detected

Symbol Timing
Data input

Yes

No

Yes

Yes

Yes

No No

No

.

USRP

.

Symbol Timing
Ini input

Initialization

 43

b. Symbol Timing

Component name: Symbol_Timing

Ports:

 Name Type Description

out_data complexFloat Send samples to the next component.

Uses out_ini realShort Inform next component whether new packet

was detected.

In_data complexFloat Receive samples for processing.

Provides In_ini realShort Receive initialization state from previous

component.

Properties:

Name Type Value Description

Sequence length Short 64 Set the length of the TS, which will be used in

order to compute the corresponding

correlation

Function: After receiving the approximate time index for the start of a new

packet, Symbol_Timing will detect the exact sample, as explained in section II.B.2.b and

demonstrated using Matlab simulation in section III.A.3. In order to be able to perform

the cross-correlation, the known TS is obtained by reading I_LS.txt and Q_LS.txt files, as

depicted in Figure 21. If the component is used to detect another OFDM standard, both

the Sequence length property and the aforementioned text files should be changed. This

component also must be aware if the current packet ended, since some variables need to

be initialized in order to detect the next packet. If the start symbol is detected as a

consequence of the cross-correlation, the remainder of the packet is sent to the next

component directly, avoiding again unnecessary computations.

 44

Figure 21. Symbol_Timing component flowchart.

Data input

Read
properties

Initialization
input

Initialization
required

Correlate
with TS

Maximum
value

Data output

Initialization
output

Initialize()

Sample
Already
detected

F_Sync
Data input

Yes

No

Yes

Yes

No

No

Delay_Corr
Data output

Start()

Read TS
from file .

. Delay_Corr
Init. output

F_Sync
Ini input

 45

c. Frequency Synchronization

Component name: F_Sync

Ports:

 Name Type Description

output_data complexFloat Send samples to next the component.

output_ini realShort Inform next component whether new packet

was detected. Uses

output_TS complexFloat Send the corresponding TS to the component

in charge of channel estimation.

input_data complexFloat Receive samples for processing.

Provides In_ini realShort Receive initialization state from previous

component.

Properties:

Name Type Value Description

Sequence length Short 64 Set the TS length, which will be used to

detect the frequency offset.

Fs Float 20,000,000 Set the sampling frequency in samples per

second.

Function: This component detects and corrects the frequency offset of the

received packet, as described in II.B.2.c and demonstrated using Matlab simulation in

III.A.3. The first received buffer contains both length-64 sequences, thus the frequency

offset is only computed in the first loop. Further data inputs from the same packet are

only corrected and sent to the CP component. The first 128 samples are also corrected

 46

and then sent to the Channel_Estimation component, which needs that information to

achieve its task. F_Sync also needs to initialize variables every time a new packet will be

received. Figure 22 is the flowchart for this component.

Figure 22. F_Sync component flowchart.

Data input

Read
properties

Initialization
input

Initialization
required

Frequency
offset

detection
Data output

Initialize()

First 128
samples

Buffer Size
Data input

Yes

No

Yes

No

Symbol_Timing
Data output

Start()

Variables
initialization .

.

Frequency
correction .

Symbol_Timing
Ini. output

LP output

First 128
samples

No

Yes

Initialization
output

.

Ch_C
Ini input

Ch Estimation
Data input

 47

d. Channel Estimation

Component name: Channel_Estimation

Ports:

 Name Type Description

output_data complexFloat Send the coefficients of the estimated channel.
Uses

output_FFT complexFloat Send each TS to obtain the FFT.

input_data complexFloat Receive samples.

Provides In_FFT complexFloat Receive the frequency domain representation

of the TS.

Properties:

Name Type Value Description

Sequence length Short 64 Set the length of the training sequence that

will be used to detect the frequency offset.

Function: Channel_Estimation receives two sequences of the length

specified in Sequence length property. The algorithm applied corresponds to the indicated

in II.B.2.e and demonstrated using Matlab in III.A.3. Figure 23 shows the functionality of

this component. The original training sequence is obtained by reading the text files

I_LSfd.txt and Q_LSfd.txt , which, unlike the files used in Symbol_Timing component,

these correspond to the frequency domain. Changing the information contained in these

files, and the value specified in Sequence length property, this component could be used

in other standard.

 48

Figure 23. Channel_Estimation component flowchart.

e. FFT

Component name: fft

Ports:

 Name Type Description

Uses
output_data complexFloat Send the frequency representation of the

processed data.

Provides input_data complexFloat Receive time samples.

Data input

Read
properties

TS1 and TS2
to FFT output

Data output Ch_C
H input

Start()

Read TS
from file .

Channel
estimation

FFT

FFT
input

F_Sync
Data output

 49

Properties:

Name Type Value Description

Length Short 64 Set the length of the FFT.

Function: This component utilizes the open source C++ library named fftw

[19] which contains the necessary functions for applying the FFT to the incoming signal.

The specific function that performs the FFT operation is fftwf_plan_dft_1d(), where two

arrays of the special type fftwf_complex are included. These arrays are named in and out.

The first carries the time samples to be processed and the latter the resulting frequency

samples. Other functions delete the variables and liberate the corresponding memory.

Figure 24 indicates the different steps executed by the FFT component.

Figure 24. FFT component flowchart.

Data input

Read
properties

Data output Ch_C or Ch_Est
Data input

Start()

Call fftw
functions

.

FFT

Channel_Estimation
 or CP_Removal
 Data output

 50

f. Buffer Size

Component name: Buffer_Size

Ports:

 Name Type Description

Uses output_data complexFloat Send samples through a defined buffer length.

Provides input_data complexFloat Receive samples for processing.

Properties:

Name Type Value Description

Out size short 80 Set the length of the output_data port.

Function: Output_Size is a simple component that changes the length of

the output_data port, which accommodates the data size according to the next component

function. In the case of the 802.11a waveform developed in this thesis, it is simpler to use

a buffer size of 128 samples at the beginning, which is the length of two long TSs, and

then change the buffer size to 80, which is the OFDM time symbol length.

 51

Figure 25. Buffer_Size component flowchart.

g. CP Removal

Component name: CP_Removal

Ports:

 Name Type Description

Uses output_data complexFloat Send samples after removing the CP.

Provides input_data complexFloat Receive samples for processing.

Properties:

Name Type Value Description

CP Length short 16 Set the length of the cyclic prefix of each

OFDM symbol.

Function: This component is very similar to the Buffer_Size component,

where the size of the output buffer is going to change, with the difference that

Data input

Read
properties

Data output CP_removal
Data input

Start()

.

Data management
 to get desired
buffer length

F_Sync
Data output

 52

CP_Removal eliminates the truncated portion of data, which correspond to the cyclic

prefix. The figure below depicts the corresponding flowchart.

Figure 26. CP_Removal component flowchart.

h. Channel Compensation

Component name: Ch_C

Ports:

 Name Type Description

output_data complexFloat Send corrected samples to the next component.

Uses output_ini realShort Inform next component whether new packet

was detected.

input_data complexFloat Receive samples for channel compensation.

input_ini realShort Receive initialization state. Provides

Input_H complexFloat Receive the estimated channel coefficients.

Function: Ch_C, applies the corresponding correction to the whole packet

as described in II.B.2.e and demonstrated using Matlab simulation in III.A.3. This

Data input

Read
properties

Data output FFT
Data input

Start()

.

Eliminate
Cyclic Prefix

Buffer_Size
Data output

 53

component also needs to be initialized after the current packet is completely received, in

order to start applying the new channel estimate to the new packet, since it assumed the

channel does not change during a packet transmission, but could change for the next

packet.

Figure 27. CH_C component flowchart.

Data input

Initialization
input

Initialization
required

Initialize()

Yes

No

FFT
Data output

Start()

Variables
initialization .

.

Channel
compensation

F_Sync
Ini. output

Data output Phase_Trk
Data input

Initialization
output

H input

Ch_Estimation
Data output

Phase_Trk
Data input

 54

i. Phase Tracking

Component name: Phase_Trk

Ports:

 Name Type Description

output_data complexFloat Send samples after phase correction.

Uses output_ini realShort Inform next component whether a new packet

was detected.

input_data complexFloat Receive samples for processing.

input_ini realShort Receive initialization state from previous

component.
Provides

Input_H complexFloat Receive the estimated channel coefficients.

Function: This component performs the phase tracking described in

II.B.2.d and demonstrated using Matlab simulation in III.A.3. Sequence sp indicated in

II.C.2.b is obtained after opening the file pol_p_seq.txt. Since this component requires the

channel estimated information for each packet, as the Ch_C component provides, it

should be initialized when a new packet is detected. Figure 28 depicts the corresponding

flowchart. It is noted that the component receiving the data from Phase_trk should be the

Signal component, developed by Leong [7]. On the other hand, the Initialization_output

port is available to be connected to any component that needs a variable initialized, when

a new packet is detected.

 55

Figure 28. Phase_Trk component flowchart.

B. ISSUES DURING DEVELOPMENT AND RECOMMENDATIONS

1. OSSIE Installation

OSSIE can be installed using the Virtual Machine Ware (VM-Ware) player [20],

where a complete image of OSSIE can be run within the Windows Operating System

(OS). This is a fast and easy installation, but with the limitation of not having complete

access to all the resources of the computer. The other alternative is to install OSSIE over

the Linux OS, which is known as a native installation. Considering the fast

synchronization requirement and the high data rate of 802.11a, the native installation is

the more convenient alternative. The disadvantage of the native installation is the

Data input

Initialization
input

Initialization
required

Initialize()

Yes

No

Ch_C
Data output

Start()

Read np

from file .

.

Phase
correction

Ch_C
Ini. output

Data output Signal
Data input

Initialization
output

H input

Ch_Estimation
Data output

 56

complexity in installing all the requested programs and libraries [4], especially if there is

a lack of background in working with the Linux OS.

2. Documentation

Because OSSIE is still under development, there is no complete manual which

explains the details of how to program a component. The way to learn it was either by

reading code from an existing component, or asking the OSSIE team through an Internal

Relay Chat (IRC) channel called #ossie. Reference [4] includes a user guide wherein is

described how to connect to the mentioned IRC channel. The following explanations are

the solutions to some problems encountered while programming the above-described

components.

a. Assembly Controller Component

When developing a waveform using OWD, one specific component

should be assigned as the assembly controller, The assembly controller starts the

sequential process that will activate the rest of the components after sending data through

the ports. This assignment is not enough; code must be added in the source

(Component_Name.cpp) and header (Component_Name.h) files, where the additional

code is in red:

 Source file:
 Void ComponentName_i::start()
 Processing_thread = new omni_thread(process_data,(void*) this);
 VariableName_active = true;
 Processing_thead->start();
 Std::cout << “start called” << std::endl;

 Void ComponentName _i::stop()
 VariableName_active = false;
 Std::cout << “stop called” << std::endl;

 Void process_data(void *data)
 .
 .
 while(ClassInstanceName->VariableName_active) {
 ………………………..

 57

 } //while
 ClassInstanceName ->processing_thread->exit();

 Header file:
 // list components provides and uses ports

 Bool VariableName_active;

b. FFTW Library

When compiling a library or software in Linux, four command steps are

required:

• ./reconf

• ./configure

• make

• su –c “make install” (as root)

In the case of fftw, the following options should be included in the

configure command step:

./configure --enable-single --enable-shared --enable-threads --enable-float.

A specific library called lfftw3f must be included, in order to be able to

operate with floating point numbers. If after typing the make command at the prompt, the

compiler complains about an undefined reference to fftwf, the library –lfftw3f should be

included by typing the following at the command prompt:

g++ -Wall –g -02 –I/usr/local/include –pthread –L/usr/local/lib –o
ComponentName ComponentName.o –lomniORB4 –lomniDynamic4 –
lomnithread –L/usr/local/lib –lossieidl –lossieeparser –lossieecf –lfftw3f –
L/usr/local/lib –lstandardInterfaces

Now the library lfftw3f (in red) has been added to the rest of the required

libraries. This process should be performed any time a component using this library is

edited.

 58

THIS PAGE INTENTIONALLY LEFT BLANK

 59

V. 802.11A WAVEFORM AND TESTING

A. 802.11A SYNCHRONIZATION WAVEFORM

The components developed in this thesis form part of a complete core of

components needed in an 802.11a receiver. As mentioned in I.C.1, the OSSIE

components developed by Leong [7] consider the demodulation and decoding stage of the

receiver assuming an ideal channel. In order to design a complete receiver, a front-end is

required to obtain the baseband digital samples, as well as the equivalent software

component to control the hardware. Therefore, the general structure of the receiver

would be as described in Figure 29.

Figure 29. 802.11a component core structure.

After having available all the required components and hardware, the next step is

to apply the necessary connections through a waveform, which is developed using the

OWD tool from OSSIE. Regarding the synchronization stage, the part of the waveform

that achieves this task will receive the digital samples from the hardware control

component, and output result samples to the decodification stage components. Figure 30

depicts a simple model of the synchronization part of the waveform, where the

components are shown inside the blue block of Figure 29.

Synchronization
stage

components

Decodification
stage

components

Hardware
Control

component

Front-end

Computer

 60

Figure 30. General model of synchronization stage waveform.

where:
 DC: Delay and Correlate (Delay_Corr).

ST: Symbol Timing (Symbol_Timing).
FS: Frequency Synchronization (F_Sync).
CE: Channel Estimation (Channel_Estimation)
FFT: Fast Fourier Transform (fft)
BS: Buffer Size (Buffer_Size)
CP: CP Removal (CP_Removal)
CC: Channel Compensation (Ch_C).
PT: Phase Tracking (Phase_Trk).

A more complete model is depicted in Figure 31, wherein the waveform includes

a coarse frequency synchronization step. It shows in green the components that work in

the frequency domain and it indicates the length of the port buffers. Another important

characteristic of this waveform is the initialization circuit, depicted through red arrows,

whereby the corresponding components become activated when a new packet is detected

and therefore specific variables should be initialized. For this purpose, a component

named Initialization_Register has a register whose value indicates whether an

initialization is needed or not. This information is extracted from the signal frame, where

the length of the packet is contained, by a component from the demodulation and

decoding stage.

DC ST FS

CE FFT

BS CP CC FFT PT

Synchronization stage

Time synchronization

Frequency synchronization

Channel compensation

Phase synchronization

Supporting components

 61

Figure 31. Initialization circuit.

where:
 FD: Frequency Detection (Frequency_detection).
 FC: Frequency Correction (Frequency_correction).
 IR: Initialization Register (Initialization_Register).

B. TESTING WAVEFORMS

The ideal testing situation processes real data from the air, through a digitizer. A

known board that does this work is denominated the Universal Software Radio Peripheral

(USRP), which contains a front end, an Analog to Digital converter (ADC), and a Field

Programmable Gate Array (FPGA) containing a decimator that permits the reception of

the data at the Intermediate Frequency (IF) using a sample rate defined by the user,

within certain constraints. The transmission of the data to the computer, where the

components are, is accomplished by a Universal Serial Bus (USB) port. Unfortunately the

throughput that 802.11a signals process is greater than the amount of data a USB port can

manage. For this reason the testing was achieved utilizing 802.11a data generated by

Matlab, simulating noise, frequency offset and multipath.

In order to test the functionality of the components, we needed to develop a series

of different waveforms to obtain the processed data of each step within the

synchronization task. Each data set was saved in a separate text file. After passing the

generated signal over the testing waveforms, the files are then opened by the same

DC ST FS

CE FFT

BS CP CC FFT PT

Decoding stage
components

FC

FD

IR

Time domain

Frequency domain Initialization circuit

Data circuit

128 128 128 128

128

128 64 64 64 64

64

64

80

32 1

1

1

1 1 1

1 64

1

 62

Matlab program that generated the signal. In this program, the results are shown by the

corresponding graphs and errors counts obtained after the whole synchronization process.

All these waveforms have two extra components for testing purposes. The first is

denominated gen, which takes the Matlab generated signal, and sends it to the first

component in the chain, Delay_Corr. The other component is Rx_Float, which obtains

the digital samples after the whole synchronization process and saves it in the

corresponding file, depending upon the waveform under test. The testing waveforms are

as follows:

1. Test 0

This waveform saves the received signal just after time synchronization. Figure

32 shows the corresponding waveform, where the data is saved in file0.txt.

Figure 32. Test 0 waveform.

where:
 G: Generated Signal (gen).
 RF: Received Signal (Rx_Float).
 FB: First Buffer Removal (First_Buffer).

Because the Symbol_Timing component includes in its first buffer the Long

Preamble (LP), a special component is needed for removing these samples and thus

saving only signal and data fields in the file. The component that achieves this is called

First_Buffer.

DC ST FB BS CP RF
file0.txt FFT

Time synchronization

Supporting components

G

 63

2. Test 1

In order to get the packet after a coarse frequency correction using the Short

Preamble (SP), the Test_1 waveform was developed. Figure 33 depicts the corresponding

flowchart, where it is indicated that the data is saved in file1.txt.

Figure 33. Test 1 waveform.

3. Test 2

This waveform obtains the signal after fine frequency correction, without a

previous coarse correction. The goal of this is to show that for frequency offset less than

156 kHz, as explained in III.A.4.b, a coarse correction is not needed. This is crucial when

the signal is undergoing a frequency offset greater than 156 kHz. The digital samples are

saved in file2.txt at the input port of Ch_C, as shown in Figure 34.

Figure 34. Test 2 waveform.

FS

CE FFT

BS CP CC FFT PT

Time synchronization

Frequency synchronization

Channel compensation

Phase synchronization

Supporting components

DC ST RF G

file2.txt

DC ST FC BS CP RF
file1.txt

FFT

Time synchronization

Supporting components

G

FD
Frequency synchronization

 64

4. Test 3

The last waveform required for testing the synchronization stage is Test_4, which

saves the digital samples after coarse and fine frequency synchronization in file3.txt, the

result of channel compensation in file4.txt, and the received signal after the phase

tracking step in file5.txt.

Figure 35. Test 3 waveform.

C. RESULTS

The resulting data from each waveform explained in the prior section, is shown

using a constellation diagram that indicates the distribution of the digital samples in the I

and Q channels of one sub-carrier. A total of six signals were generated to demonstrate

the effect of a non-ideal channel, and the corresponding contribution of each component

in enhancing the signal. All the signals are preceded by random values, and are affected

by noise. Table 8 shows the characteristics of each signal.

FS

CE FFT

BS CP CC FFT PT FC

FD

Time synchronization

Frequency synchronization

Channel compensation

Phase synchronization

Supporting components

DC ST G

file3.txt file4.txt

RF
file5.txt

 65

Name Length

(Samples)

Modulation Freq offset

[kHz]

2nd Path

[sµ]

3th Path

[sµ]

4th Path

[sµ]

Signal 1 960 BPSK 30 --- --- ---

Signal 2 960 BPSK 180 --- --- ---

Signal 3 3000 QPSK 180 --- --- ---

Signal 4 3000 QPSK 20 0.6 --- ---

Signal 5 3000 QPSK 20 1.2 --- ---

Signal 6 3000 QPSK 160 0.3 0.5 0.6

Table 8. Characteristics of the simulated 802.11a signals.

The frequency offset represents the difference between transmitter and receiver

local oscillators and the effect of Doppler shift caused by moving devices.

The next description explains each of the testing signals, which include two

figures with sub-figures. The first indicates the effect of choosing one or two steps in

frequency synchronization, and the latter the result of applying channel and phase

correction. The letter distribution of the sub-figures is described below:

First figure:

(a) Received signal after packet detection (file0.txt).

(b) Signal after coarse frequency synchronization (file1.txt).

(c) Signal after fine frequency synchronization, without a previous coarse

frequency correction (file2.txt).

(d) Signal after fine frequency synchronization with a previous coarse frequency

correction (file3.txt).

Second figure:

(a) Signal after channel compensation (file4.txt).

(b) Signal after phase tracking (file5.txt).

 66

1. Signal 1

The intention of this signal is to demonstrate a simple BPSK transmission affected

only by noise and a small frequency offset, which can be managed using only one

frequency synchronization step, utilizing the Long Preamble. In Figure 36 it is possible to

verify that the coarse frequency synchronization does not enhance the signal as desired.

In fact it is not needed by the fine synchronization as depicted in sub-figures (c) and (d),

where there is no difference.

 (a) (b)

 (c) (d)

Figure 36. Frequency synchronization effect in Signal 1.

 67

Due to the small frequency offset that affects the signal, the channel and phase

correction have not much to do, although we notice a very small correction in rotation in

Figure 37.

 (a) (b)

Figure 37. Channel and phase correction of Signal 1.

2. Signal 2

A frequency offset of 180 kHz has been added to Signal 2, in order to demonstrate

the good result of having a coarse synchronization when a signal greater than 156 kHz in

offset is processed. Although letter (b) in Figure 38 seems to indicate that a coarse

frequency correction does not help as expected, its effect is noted in letter (d), where the

correction achieved by (b) is enhanced giving the depicted constellation. Letter (c) shows

that a frequency correction using only the Long Preamble without a previous coarse

correction, gives an incorrect result.

In Figure 39 the results after channel and phase correction are shown.

 68

(a) (b)

(c) (d)

Figure 38. Frequency synchronization effect in Signal 2.

 (a) (b)

Figure 39. Channel and phase correction of Signal 2.

 69

3. Signal 3

The goal in this signal is the same as in Signal 2, but transmitting a packet

modulated in QPSK, where the frequency offset has a major impact in the signal. Figure

40(c) and (d) show the same effect as with signal 2, where two steps of frequency

correction obtain better results.

 (a) (b)

 (c) (d)

Figure 40. Frequency synchronization effect in Signal 3.

 70

In the case of this QPSK signal, as depicted in Figure 41, a last correction in

phase noticeably improves the constellation, and therefore the receiver performance.

 (a) (b)

Figure 41. Channel and phase correction of Signal 3.

4. Signal 4

This signal is put under 20 kHz of frequency offset and includes a second path

delayed 0.6 sµ , which is less than the CP, hence does not affect the packet after

synchonization. Figure 42, again shows that a small frequency offset does not need two

steps of frequency synchronization.

The same Matlab program used for generating the desired signal is utilized to

analyze the files created by the testing waveforms. At the same time, the digital samples

obtained after the last step of the synchronization, which is the phase tracking, are

compared to the original ones, in order to determine the amount of errors. The results

after applying a second path of 0.6 sµ gives zero errors.

 71

 (a) (b)

 (c) (d)

Figure 42. Frequency synchronization effect in Signal 4.

 (a) (b)

Figure 43. Channel and phase correction of Signal 4.

 72

5. Signal 5

This signal keeps the 20 kHz frequency offset as with Signal 4, but now includes

a second path delayed 1.2 sµ , which is greater than the CP. As expected, the resulted

digital samples give 20 errors after comparing to the original signal. Figure 45 shows in

(d) a non perfect constellation, where the 20 errors are not appreciated because the graph

is showing only one sub-carrier.

 (a) (b)

 (c) (d)

Figure 44. Frequency synchronization effect in Signal 5.

 73

 (a) (b)

Figure 45. Channel and phase correction of Signal 5.

6. Signal 6

This last generated signal contains a frequency offset of 160 kHz, thus two steps

of frequency synchronization are required. In addition to this, four paths are included, all

of them delayed within the CP time. In order to realize the indispensable work of the

synchronization chain in OFDM transmissions, six sub-carriers are shown in the graphs.

With six sub-carriers is difficult to appreciate the effect of frequency correction,

as shown in Figure 46.

As depicted in Figure 47, after channel compensation the constellation becomes

more clear. Then the last rotation enhancement is caused by the phase tracking step.

This last signal demonstrates that the synchronization process achieved by the

algorithms discussed in this work enhance noticeably an OFDM signal affected by noise,

frequency offset and multipath. A correct start packet sample identification will ensure

avoiding ISI and ICI as explained in section II.B.2. If the start sample calculated is after

the actual one, the symbols will contain information from the next symbol’s CP. If the

start sample is selected before the actual one, the multipath delay spread accepted will be

shorter. The limit in the frequency offset is imposed by the coarse synchronization using

 74

Short Sequence, which is 625 kHz, as indicated in section III.A.4.b, although the

maximum allowed by 802.11a is 212 kHz. The main constraint is the multipath delay

spread, which will cause errors if it is longer than the CP. This is unlikely for indoor

operation.

 (a) (b)

 (c) (d)

Figure 46 Frequency synchronization effect in Signal 6.

 75

 (a) (b)

Figure 47. Channel and phase correction of Signal 6.

 76

THIS PAGE INTENTIONALLY LEFT BLANK

 77

VI. CONCLUSIONS AND FUTURE WORK

A. SUMMARY OF WORK

This thesis describes the design of a synchronization stage for an 802.11a

software defined receiver. The software used to accomplish this goal was OSSIE, which

includes a component and waveform development tool called the OWD. The application

is based on the development of components for each specific synchronization type

required in an OFDM signal transmission. One of the goals was developing these

components using an open architecture to allow reuse for other OFDM standards.

The use of Matlab at the beginning of the work was essential for verifying the

correct implementation of the algorithms obtained from the literature. After this process

the next step was programming the components in OSSIE and testing them against the

results obtained in Matlab.

Due to the throughput that 802.11a signals process and the limitations of our

hardware, the testing part of this work was based on simulated data generated by Matlab,

which used the standard packet structure affected by noise, frequency offset and

multipath. The results obtained showed the correct functionality of the components

through a visual demonstration using constellation diagrams, and a data comparison

against the generated signal, giving the error count after the synchronization stage

performed by OSSIE.

B. SUGGESTED FUTURE WORK

In order to obtain a complete and efficient 802.11a waveform implemented in

OSSIE, the following future work is recommended.

1. Demodulation and Codification Components Upgrade

The group of components developed by Leong [7], should be upgraded to the

current version of OSSIE, which is 0.6.1, and integrated with the synchronization

 78

components designed in this work. Additionally, the following modifications should be

performed to fulfill the structure followed by the synchronization components:

a. Initialization Circuit

The decodification component in charge of extracting the information of

signal frame should have a dedicated port to inform the Initialization_Register

component when the current packet has ended. Another way to accomplish this is to pass

the Initialization_Register the length of the packet and make the necessary modifications

to calculate when the packet will end.

b. Connection Between Synchronization and Decoding Components

When creating the 802.11a waveform, the last component of the

synchronization stage that should be considered is Phase_Trk. The first component in the

decodification stage should be the one in charge of the signal frame recovery.

2. Real Data Test

After having all the components working properly, the next step is to test the

802.11a waveform with real data from the air. The aforementioned USRP board is

limited to the data rate accepted by the USB port, which is not enough to manage an

802.11a waveform. A recently announcement from Ettus, the USRP manufacturer,

indicates that a new USRP is under development, which will include an Ethernet port that

will permit a much greater transfer rate. With this new board, the USRP2, it will be

possible to send an 802.11a sampled signal to the PC and process the data in the

corresponding waveform. A USRP control component should be developed in order to

read the digitized signal and send the samples to the first component in the

synchronization stage, which is Delay_Corr.

 79

LIST OF REFERENCES

[1] IEEE Std 802.11g-2003, “Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) specifications. Further Higher Data Rates Extension in
the 2.4 GHz Band.”

[2] Afshin Niktash, Rafael Maestre and Nader Bagherzadeh, “A Case Study of

Performing OFDM Kernels on a Novel Reconfigurable DSP Architecture,”
MILCOM 2005.

[3] JTRS, “Software Communications Architecture Specification,” Version 2.2.2,

May 2006.

[4] OSSIE Projects, http://ossie.mprg.org/OSSIE_Projects, last accessed on July

2007.

[5] Uprenda Ramdat, “Software Communications Architecture (SCA) Compliant

Software Defined Radio Design for Interim Standard 95B (IS-95B) Transceive,”
Master Thesis, Naval Postgraduate School, March 2007.

[6] Low Kian Way, “Software Communications Architecture (SCA) Compliant

Software Defined Radio Design for IEEE 802.16 Wireless MAN-OFDM
Transceiver,” Naval Postgraduate School, December 2006.

[7] Leong Wai Kiat Chris, “Software Defined Radio Design for an IEEE 802.11a

Transceiver Using Open Source Software Communications Architecture (SCA)
Implementation::Embedded (OSSIE),” Naval Postgraduate School, December
2006.

[8] Vikram Sardana, “Extending the Range of the 802.11g WLAN Through improved

Synchronization Techniques,” Master Thesis, Naval Postgraduate School, June
2007.

[9] Edited by Walter Tuttlebee, “Software Defined Radio,” Wiley 2002.

[10] “Definition of Software Communication Architecture, Wikipedia,”

http://en.wikipedia.org/wiki/ Software Communication Architecture, last accessed
on June 2007.

[11] Carlos R. Aguayo Gonzalez, “Design and implementation of an Efficient SCA

Framework for Software-Defined Radios,” Master Thesis, Virginia Polytechnic
Institute and State University, 2006.

[12] “Definition of OSSIE.” http://ossie.mprg.org, last accessed on June 2007.

 80

[13] Richard Van Nee, Ramjee Prasad, “OFDM for Wireless Multimedia

Communication,” 1st sd., Artech House Publishers, 2000.

[14] Roberto Cristi, Notes from course EC-4910: “DSP for Wireless Communication,”

2006.

[15] Juha Heiskala, John Terry, “OFDM Wireless LANs: A Theoretical Practical

Guide,” SAMS Publishing, 2004.

[16] Ramjee Prasad, “OFDM for Wireless Communication Systems,” 1st sd., Artech

House Publishers, 2004.

[17] IEEE Std 802.11a-1999 (Revision 2003), “Part 11: Wireless LAN Medium

Access Control (MAC) and Physical Layer (PHY) specifications. High-speed
Physical Layer in the 5 GHz Band.”

[18] Jacob A. DePriest. “A Practical Approach to Rapid Prototyping of SCA

Waveforms,” Master Thesis, Virginia Polytechnic Institute and State University,
2006.

[19] Matteo Frigo, Steven G. Johnson. FFTW library from MIT. Website:

www.fftw.org, last accessed on June 2007.

[20] VMware Website:”Run Virtual Machines on your PC for Free”

http://www.vmware.com/products/player/, last accessed on September 2007.

 81

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, VA

2. Dudley Knox Library

 Naval Postgraduate School
 Monterey, CA

3. Professor Jeffrey B. Knorr

 Chairman, Code EC
 Department of Electrical and Computer Engineering
 Naval Postgraduate School
 Monterey, CA

4. Assistant Professor Frank Kragh, Code EC/Kh
 Department of Electrical and Computer Engineering
 Naval Postgraduate School
 Monterey, CA

5. Professor Roberto Cristi, Code EC/Cx

 Department of Electrical and Computer Engineering
 Naval Postgraduate School
 Monterey, CA

6. Ray Cole

 Networks and Communication Systems Branch
 U.S. Naval Research Laboratory
 Washington, DC

7. Professor Carl Dietrich

 Virginia Polytechnic Institute and State University
 Blacksburg, VA

8. Professor Jeffrey H. Reed

 Virginia Polytechnic Institute and State University
 Blacksburg, VA

9. Ms. Donna Miller
 Department of Electrical and Computer Engineering
 Naval Postgraduate School
 Monterey, CA

 82

10. LCDR Vikram Sardana
USN, N39
Command Carrier Strike Group 7 Unit 25061

11. LCDR Juan Luis Sanfuentes
 Chilean Navy
 Valparaiso
 Chile

